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Abstract. The Capillary hysteresis for the drainage-imbibition process in correlated site-bond 
porous networks is studied. The degree of correlations between pore radii is shown to produce 
important modifications on the hysteresis loop which is wider far non-comlated &orb and 
nanower for correlaed ones. A relation between the degree of correlation and the type of solid 
is suggested. 

1. Introduction 

The behaviour of fluids on heterogeneous porous media is a subject of great interest for 
science and engineering. Flow phenomena in natural and synthetic porous materials, and 
their connection with the most sophisticated techniques of statistical physics of disordered 
media (fractals, percolation, scaling laws, etc), has been recently reviewed by Sahimi [I]. 

In this work we study the capillary hysteresis loops that various porous materials offer 
during the drainage and imbibition processes, where a non-wetting phase displaces a wetting 
one and vice versa. In this kind of process, in which a liquid enters and leaves a pore space, 
two main characteristics are observed: a percolation threshold and a hysteresis loop [2,3] .  
These characteristics can be explained by considering the pore space to fill and empty in 
discrete steps which involve network connections to particular phases, i.e., it is necessary 
to take into account the network topology. The simplest model for capillary hysteresis 
considers the porous media as a network of channels obeying capillary laws. In a porous 
medium, however, the pore space can be divided into two classes: pore bodies, where 
most of the porosity resides, and pore throats, which are the channels that connect the 
pore bodies. In a network representation of the pore space, the pore bodies are equivalent 
to the sites of the network, and the pore throats are equivalent to its bonds. The fluid 
penetration will only be possible when a critical fraction of sites and bonds are opened, 
i.e., they fulfil capillary law requirements for invasion. The site-bond percolation problem 
and its application to capillary hysteresis in a porous network has already been investigated 
by Yanuka [4]. However this author did not treat the most general case where a correlated 
network is considered. It has already been shown [5] that the degree of correlation in those 
networks strongly affects the shape of hysteresis loops for nitrogen sorption and mercury 
porosimetry. In the present work we intend to study the effect of correlations between pore 
radii in a site-bond porous network on the capillary hysteresis for a drainageimbibition 
process. 
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2. Site-bond description of porous media 

We consider a porous solid as a three-dimensional network of N ( N  + CO) sites (or voids) 
connected by bonds (or throats); figure 1. The number of bonds emerging from a given site is 
the connectivity z of that site. We suppose that site and bond sizes are statistically distributed 
by frequency functions, F,(R) and Fb(R), respectively, such that F,(R)dR(Fb(R) dR) is 
the probability of finding a site (bond) with radius between R and R + dR. The site and 
bond distribution functions, S(R) and B(R) .  given by 

A M Vidnles et a1 

R 
F,(R)dR B(R) =l Fb(R)dR 

represent the probability of finding a site or a bond, respectively, with a radius no greater 
than R. 

Figure 1. Porous sp3w of voids and lhroats and i ts  schematic representation ns a network of 
sites and bonds. 

In order to build the site-bond network, we adopt the following rule: for every site, its 
size is always greater than, or at least equal to, the size of any of its z bonds. Then it  is 
necessary that all the bonds have sizes sufficiently small, such that 

B(R) > S(R) for every R .  (2) 

Overlap between the frequency curves is allowed, figure 2, meaning that there will be 
some bonds of size greater than some sites. The fact that sites and bonds cannot be randomly 
interconnected is then taken into account by assuming that the si tebond connected pairs 
are statistically described by the joint distribution function 

F(Rs, Rb) = Fs(RJFb(Rb)@(Rs, Rb) (3) 

where F(R,, Rb) dR, dRb is the probability of finding a site with size between R, and 
Rs -k dR,, connected to a bond with size between Rb and Rb + dRb; and @(RE, Rb) is a 
correlation function characterizing the porous medium. If @ = I, the events of finding a 
site of size R, connected to a bond of size Rb would be independent and the network would 
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Figure 2. Dual size distributions. one for bonds and one For sites, wilh an overlap area n 
between them. 

be built randomly. Then, the fact that a bond of size Rb cannot be connected to a site of 
size R, < Rb is expressed as 

An expression for the correlation function can be obtained by assuming a method of 
generation of what are the fundamental building blocks of the network, i.e., a site with its 
two bonds. which will build up the complete network once they are brought together, The 
simplest form of q5(Rs, Rb), which we shall use here, is the one that allows the maximum 
degree of randomness compatible with the construction rule, and i s  given by [6-8] 

with these limiting values 

where C2 is the overlap common area between F,(R,) and Fb(Rb) and 6 is the Dirac delta 
function. 

In the simplest case where sites and bonds are uniformly dismbuted 

for bi < R 6 b? 
otherwise 

= [ 0" 
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where sz - SI = bz - bl = 1/Fo; the correlation function takes the form 

A M vidales et ol 

where 01 is a piecewise function given by 

and S2 is the overlap between F,(R) and Fb(R). 
The topography of the pore space strongly depends on the overlap degree Q,  With 

S2 = 0, we have an uncorrelated porous structure where sites and bonds are very well 
differentiated entities randomly assigned to each other. For D - 1 we have the opposite 
case, namely a very correlated structure where bonds connected to a given site have almost 
the same radius as that of the site. In practice, the structure can be considered as a collection 
of macroscopic domains of uniform pore sizes. In an intermediate situation between these 
two extremes, we find a variety of interconnected pore sizes (a given site can be connected 
to bonds ranging from very small sizes to a size simiIar to its own) forming a quite intricate 
structure with a certain short-range order. This intermediate case may be representative of 
the great majority of natural porous media. 

It is to be expected that these different porous structures will present different percolation 
behaviours and also different characteristics in their capillary hysteresis loops, and this will 
be shown in the following sections. In what follows we shall assume that the pore volume 
is predominantly associated with sites. The treatment can be easily extended to the case 
where the pore volume is associated to bonds or to both. 

3. Percolation probabilities in a correlated network 

In this section we present the relation between pore structures and their percolation 
properties. The classical application of percoJation theory to model pore networks is the 
random site-bond percolation problem, in which both sites and bonds in a lattice are 
randomly occupied or open. The open or closed states of sites and bonds will depend 
upon the physical process to be considered. In capillary phenomena these states can be 
obtained from Laplace’s equation. The following definition seems suitable: a site (bond) is 
considered to be opened if its radius is greater than some critical radius cs (o,). The critical 
radii c, and cb may be different since they depend on the pore geometry. If the site and 
bond distribution functions,~~F,(R) and Fb(R), have a common area, we must use correlated 
site-bond percolation to model capillary processes. because the state of any element (site or 
bond) will be subject to the state of its neighbouring elements. The main problem is now 
to calculate the percolation probabilities for a given correlated sitsbond network. The site 
(bond) percolation probability P s ( P b )  is the probability that any open site (bond) belongs 
to the infinite cluster of open elements. A cluster of all open elements is said to be infinite 
if it spans the network. 

We shall give here briefly the solution for the percolation problem in a correlated site- 
bond Bethe lattice of coordination number z ,  figure 3, in which the correlation function 



Capillary hysteresis in porous media 3839 

is given by 4(Rs, Rb). The employment of these types of lattice is suitable, since this 
will allow an approximate analytical solution and a description of percolation probabilities 
qualitatively valid for other lattices. If c,(Q) is the site (bond) critical radius, then the 
probability for a site (bond) to be opened, p&), is given by 

Figure 3. The Bethe lattice of coardin3tion number z. 

Let us introduce the following probabilities for the multiple events; figure 3 psb = 
probability for the event site Sand bond B borh open. psi = probability for the event site S 
open and bond B blocked. psb< = probability for the event site S, bond B, andsite S' all open. 
ps&, = probability for the event site Sand bond B open, site S' blocked. p w  = probability 
for the event bond B, site Sand bond tT all open. pbsp = probability for the event bond B 
and site S open, bond B' blocked and so on for greater clusters. All these probabilities are 
calculable in terms of ps, p b  and '2 in the case of the uniform distribution; for example 

To obtain the percolation probabilities for a Bethe lattice of connectivity z, we follow 
the method introduced by Essam for random percolation [9], and generalized by Coniglio 
for the percolation of interacting spins [lo]. Let e&&,) be the probability that a branch 
starting from an open site (bond) becomes blocked somewhere. Then the site and bond 
percolation probabilities can be obtained through 



3840 

where, in an approximation taking into amount the correlations up to triplets, Q. and Qb 
satisfy the following equations: 

A M vidales et a1 

This allows the calculation of site and bond percolation probabilities, Ps and Pb,  and 
the percolation thresholds, as functions of ps, Pb and $2. The details for solving the 
equations (18) and (19) in the general correlated case C2 # 0 are given in [ I l l ;  here 
we only present the main results for a site-bond Bethe lattice of connectivity z = 3. The 
behaviours of the percolation probabilities Ps and Pb as functions of ps at Pb =constant, 
in the simple case of uniform site and bond distributions, are given in figure 4. We see 
that the percolation probabilities are very sensitive to the overlap degree C2, and that high 
values of R make the percolation threshold decrease. Thus the correlations of the porous 
shucture facilitate the percolation. These results for the correlated site-bond Bethe lattices 
are qualitatively identical to that obtained by numerical simulation on the correlated site- 
bond square lattice [12]. We shall see that the characterization of the porous structures by 
the dual site-bond distribution is adequate and that the observed behaviour of Ps and Pb 
gives a consistent picture of the general characteristics of capillary hysteresis loops for a 
great variety of agglomerated materials. 
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Figure 4. Site and bond percolation probabilities. Ps and Pb, on the Bethe lattice with z = 3, 
zu functions of pa (fraction of open sites), for different conslant values of R and p b  (fraction of 
open bonds). 



Capillary hysteresis in porous media 3841 

4. Drainage-imbibition process 

The equation governing the drainago-imbibition process is the Laplace equation for 
capillarity: 

P = 20/Rm (20) 

where P is the capillary pressure developed across the interface between the wetting and the 
non-wetting phase in the pore space, o is the interfacial tension, and l / R m  is the average 
curvature of the interface. This equation determines whether a site or a bond is opened or 
not to the fluid flow. For a given external pressure some of the pores in the porous medium 
will be ‘open’, i.e., will let fluid flow through them in relation to their sizes, and others will 
be ‘closed’, i.e., will have a size such that they will not permit fluid flow. 

In the drainage process the smallest pores determine the pressure at which the pore will 
drain. On the other hand, during imbibition, the largest pores determine the pressure at 
which the pore will fill. The pressure difference in emptying or filling the pores is one of 
the major reasons for capillary hysteresis phenomena in these media and in this work it will 
be considered the only one. 

From the preceding analysis we may deduce that the drainage process will take place 
in pores for which the external pressure exceeds the critical value of the pressure at the 
pore throat level, i.e., we may associate this process to a bond percolation problem. During 
imbibition, on the other hand, the pore will fill entirely if the external pressure is lower 
than a critical value at the pore body level and we may associate this process to a site 
percolation problem. If S, is the saturation fraction of the wetting phase for a solid at a 
given external pressure P, ps(pb) the fraction of sites (bonds) whose radii fulfil the Laplace 
equation corresponding to that pressure, and V + ( V - )  the volume fraction belonging to sites 
whose radii are greater (lower) than the critical Laplace radius, rL, then for the drainage 
process 

and for the imbibition process 

where P 5 ( P b )  are the site and bond percolation probabilities in  the Bethe lattice. This 
accounts for capillary hysteresis without the trapping effect. 

5. Results and discussion 

The calculated percolation probabilities Ps and Pb for different de,wes of the overlap C2 
are introduced in (21) and (22) to obtain the corresponding hysteresis loops in figure 5. 
There we show the network saturation fraction, S,, of the wetting phase against l/Rm that 
is proportional to the pressure developed at the interface. 

We observe that, during drainage, S, is equal to unity until a critical value in the 
pressure is attained. This value corresponds to the radius at which the minimum necessary 
fraction of ‘opened’ bonds is allowed. At these stages the so-called breakthrough pressure 
is reached, and sites may drain. 
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F i p  5. Numerical results for drainage (upper) and imbibition (lower) in correlated site-bond 
Beihe networks, showing the hysteresis loops for three different valucs of L e  averlap Q. 

On the other hand, during imbibition, bonds must wait the critical condition for sites, 
i.e., the minimum necessary fraction of ‘opened’ sites that permits imbibition. The plateau 
on the curves indicates the breakthrough pressures for which drainage and imbibition begin. 

As the overlapping between the two size distributions increases the percolation 
thresholds decrease and the critical conditions are more rapidly fulfilled, then the 
breakthrough pressures are overtaken at lower values (figure 5) .  

If we keep in mind the relation between the two critical conditions mentioned and the 
overlap, we realise that these conditions are much the same at very high overlap, meaning 
that we could not have any hysteresis loop because the two curves would coincide. For 
lower degree of the overlap, these two critical conditions are more and more separated, 
and in the limiting case S2 = 0, all sites must ‘wait’ until the critical condition for bonds 
is achieved during drainage (random bond percolation). and vice versa during imbibition 
(random site percolation), then a wide hysteresis loop just like that in figure 5 is obtained. 

One way of producing porous materials is through the agglomeration of particles with 
different shapes. The resulting pore structure will depend on the packing efficacy of the 
constituent particles, which is a function of their symmetry properties [13-15]. 

The packing of spherical particles creates a porous network in which pore bodies 
and pore throats are very well differentiated entities. Obviously, such a structure should 
be represented by a site-bond distribution with an overlap degree S2 = 0. Almost the 
same occurs if the constituent spheres are not perfectly homogeneous, According to the 
percolative properties of this type of structure, the percolation threshold is maximum and a 
wide hysteresis loop like the one shown in figure 5 for Q = 0 is expected. 

A very different behaviour occurs for the packing of platelike particles. These particles, 
with only one symmeby axis, tend to pack by aligning themselves face to face creating 
little differences between the sizes of bodies and throats. We then expect for this kind 
of structure a site-bond distribution with a very high overlap degree C2. This means that 
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the percolation threshold is quite low, so the breakthrough pressure, and a much narrower 
hysteresis loop than that corresponding to spheres would be observed. It is worth remarking 
that the imbibition branch is a little steeper than the drainage one, according to the difference 
between Ps and P b  for high values of S2. 

We see then that agglomerates of particles of different shapes, due to their particular 
packing efficiency, form different porous structures that can be reasonably characterized by 
the site-bond joint distributions. This characterization, due to the percolation properties of 
correlated site-bond networks, is able to predict porosimetric and sorption loops that are at 
least qualitatively consistent with the observed experimental behaviour of many carefully 
controlled samples [5,16]. 

In conclusion, the joint site-bond description of porous structures, together with the 
percolation model for correlated site-bond networks, seems to be appropriate to characterize 
more completely complex porous materials occurring in nature. 
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